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We study the kinetics of growing cell populations by means of a kinetic Monte Carlo method. By applying
the same growth mechanism to a two-dimensional �2D� and a three-dimensional �3D� model, and making
direct comparison with experimental studies, we show that both models exhibit similar behavior. Based on this
we propose a method for establishment of a mapping between the 2D and 3D results. Additionally, we present
an analytic approach to obtain the time evolution, and show in case of the 3D model how synchronization
effects can influence the growth kinetics. Finally, we compare the results of our models to experimental data of
the growth kinetics of 2D monolayers and 3D NIH3T3 xenografts in mice.
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I. INTRODUCTION

The study of cell population growth and in particular of
tumor growth by modeling the basic interactions has at-
tracted wide interest. Both reaction-diffusion-type or con-
tinuum mechanical models, where densities of cells are con-
sidered �for reviews, see �1–5��, and individual-cell-based
models, where the basic modeling unit is the individual cell
�for reviews, see �6–10��, have been considered to analyze
aspects of tumor growth on different spatial scales.

By systematic investigation of the influence of different
mechanisms in such models which determine the behavior of
individual cells, one can understand how mechanisms on the
cell scale affect the macroscopic growth kinetics of a tumor.
On the other hand, models of molecular regulation built into
each individual cell within an individual-cell-based model
allow one to understand how molecular changes affect cell
behavior. Linking both can permit prediction of the impact of
molecular changes on the growth dynamics of tumors
�11–13�. Previous theoretical studies have established that
both the growth kinetics and surface dynamics of cell lines
growing as two-dimensional �2D� monolayers in vitro can be
modeled by a two-dimensional cellular automaton �14�.
These results can be seen in direct comparison with the ex-
perimental investigation of tumor cell monolayers studied by
Brú et al. �15�. Detailed experiments with different cell lines
in vitro and in vivo result in universal critical surface dynam-
ics, which characterizes these types of mainly malignant tu-
mor cells �15–18�. It has recently been shown that this criti-
cal surface dynamics corresponds to the Kardar-Parisi-Zhang
�KPZ� universality class �14�, in contrast to earlier interpre-
tations by Brú et al. �15�.

It remains as largely open question in how far predictions
from the 2D investigation can be mapped directly to three-

dimensional �3D� investigations. If so, 2D models could con-
stitute a very useful tool to draw conclusions also about 3D
cell populations. In this paper we study the relationship be-
tween the 2D model and a corresponding 3D model, both
based on individual cells as the elementary modeling unit.
We show in detail the coincidence of the basic properties.
Additionally we propose a 3D mean-field model which
opens up the possibility to map the results from the single-
cell-based model in three dimensions, where computational
expense becomes a problem, to a simplified 3D model at
considerably reduced computational effort. This becomes
crucial if growth and therapy of tumors at the stage of clini-
cal manifestation should be modeled because at this stage the
tumors are usually of centimeter size, and thus have
�109–1010 cells. Such population sizes are not amenable to
individual-cell-based models. We compare our models to ex-
perimental findings on �in vitro� monolayers �two dimen-
sions� and �in vivo� NIH3T3 mouse-fibroblast xenografts
grown in mice �three dimensions�.

Synchronization effects in cell populations play an impor-
tant role in clinical research �see, e.g., �19–21��. The effects
of synchronization on the growth kinetics of tumor cells have
been known for a long time �see, e.g., �22��. It has been
shown that the degree of synchronization can significantly
affect the growth speed of tumors �23�. So it is an important
question to know how long these colonies stay synchronized,
since certain tumor therapy approaches are based on most
cells being in the same stage in cell cycle �see, e.g.,
�24–28��. In the framework of our model we are able to give
an answer to that question.

II. MODELING

For both models, in two and in three dimensions, some
basic rules have to be fulfilled. The models should be based
on individual cell actions. By comparison with experimental
data of monolayers and xenografts �tumors that emerge from
the injection of tumor cells into animals�, we find that it is
sufficient to include only basic aspects of cell behavior to
explain the data and reproduce some more general features
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of solid tumors. We here consider cell division and migration
controlled by contact inhibition of cell division and contact
inhibition of cell migration. The lack of nutrients as a
growth-limiting factor was not taken into account since in
the growth data we compared our simulation results to, nu-
trients were not limiting. Necrosis and apoptosis were ne-
glected for the same reason. However, the effect of apoptosis
on the growth kinetics within our models can be considered
over a wide range of apoptosis rates by a rescaling of growth
rate.

The 3D model, as explained later, will be modified to
permit simulations of large cell populations up to the
centimeter-sized tumors. Here a kind of mean field is used to
reduce the computational expense. First, we introduce the
individual-cell-based model. We describe the model in detail
in case of two dimensions, and further elaborate the specific
differences to the 3D case.

A. Two-dimensional model

1. Lattice

To avoid lattice artifacts in our results we use Voronoi
cells �29� to construct a lattice that is unstructured but has a
well-defined distribution of the cell area. Our construction is
divided into the following steps.

We take a simple square lattice of size L= l� l points with
a lattice constant a. All cells here then have a cell area A
=a2, where the overall area is ��l−1�a�2 �noting that a lattice
with l points has l−1 divisions�.

The second step is to distribute points randomly in every
square. We insert exactly one point into each square, which
leads to �l−1�� �l−1� construction points for our Voronoi
diagram. According to the Voronoi property, all those points
in space are assigned to a construction point such that they
are closer to that construction point than to any other con-
struction point. The dual graph of a Voronoi diagram is the
Delaunay diagram. It connects all those construction points
in space that are neighbors in the Voronoi diagram �30�.

The lattice resulting from this algorithm has the following
properties:

�a� �l−1�� �l−1� points with a well-defined neighbor-
hood of on average six neighbors as a result of the Delaunay
triangulation;

�b� a predescribed average cell area of Ā=a2 with a well-
defined sharply peaked distribution around the average �de-
termined by the choice of one point in each square�; and

�c� a well-defined correspondence of the lattice points to
the cell structure on the dual graph.

2. Rules

As basic processes within our cell population growth
model, we consider division and migration of cells. Apopto-
sis, which for moderate rates only rescales the growth rate,
and mutations can be easily added �see �14,31�� but are ne-
glected in this paper. The lattice structure in our model does
not determine anything about the structure of the cell, so cell
division is reduced to modeling the cell-cycle time and its
distribution. The cell cycle consists of distinct phases,

namely, the mitosis phase �M phase�, the DNA duplication
phase �S phase�, and gap phases, in which cell signaling and
individual cell conditions determine the time. The cell cycle
is controlled by cell-cycle checkpoints �32�. For the total
duration of the cell cycle, experiments indicate a �-like dis-
tribution, which is why we here model the cell-cycle time �
using the discrete analog to the � distribution, the Erlang
distribution in Eq. �1�,

f���� = �m
��m���m−1

�m − 1�!
exp�− �m��� . �1�

Here �m=m such that ���	
 �̄=1. The parameter m controls
the shape of the cell-cycle time distribution. As can be easily
seen from the equation, m=1 corresponds to a Poisson dis-
tribution. For m→� the distribution converges against a �
distribution, implying that the cell-cycle time is the same for
all cells. For values between m�5 and m�60 the shape of
the cell-cycle time distribution resembles well that found in
experiments with radioactive thymidine as a cell prolifera-
tion marker �e.g., �33��.

In our model cell division is the same as the occupation of
a new lattice point. We describe the biological process of one
mother cell dividing into two daughter cells by choosing one
cell to divide and then setting the new cell onto a neighbor
site on the lattice, adjacent to the mother cell. In the single-
cell-based model a lattice site can be occupied by at most
one cell. The offspring is placed randomly on the free neigh-
boring sites. Here different choices are possible. If one con-
siders a choice of position which promises the best environ-
ment for the cell, for instance, maximum nutrients or
maximum free volume, then the rules may have to be
changed. In the case where there is no free neighboring site,
cells are pushed away along the shortest track to the nearest
free site so that a free adjacent place for the offspring occurs.

By experimental observations of many tumor cell lines
Brú et al. �16� found a kinetic behavior that shows an expo-
nential growth in the early phase of the development of the
cell diameter that then changes to linear growth, so corre-
spondingly a proliferating rim has to be included in the
model. This is done by permitting division if there is at least
one free lattice site in distance smaller than �L from the
proliferating cell. In Fig. 1�a� we see the steps for the 2D
case with the basic square lattice �white lines�, the distributed
points �black points�, and the Delaunay triangulation �red
lines�. The shape for a cell, which is chosen to perform an
action, is identified here by the dual graph to the triangula-
tion �see the white polygon�. The radius of the circle �green�
is given by the proliferation length �L. If there exists a free
lattice site inside this circle, the cell division is possible. In
doing so it pushes the neighbors along the shortest track to
the free lattice site away, placing the offspring directly next
to it. Figure 1�b� shows the considered cell �red� and the
adjacent cells inside the proliferation length �blue� on the
dual Voronoi lattice in three dimensions. We refer to �L as
proliferation length. Its values are given in units of lattice
constant a. The experimental growth velocities do not agree
with a proliferating rim �L=1. Thus, �L	1 is needed.

For tumor cell populations in general, processes related to
migration play a crucial role. If a mutation causes a cell to
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lose its ability to adhere to other cells, it may invade the
surrounding tissue �12�. Migration can then cause these cells
to invade other parts of the human body and form new tu-
mors. Although it is not our aim to model the metastatic
processes of invasive cells in this paper, we consider cell
migration.

In our models a cell moves with rate 
 to an unoccupied
neighboring site, irrespectively of the number of neighboring
cells before and after its move. This rule corresponds to the
case of no cell-cell adhesion. Summarizing our investiga-
tions we have to deal with three parameters: the proliferation
length �L, the migration rate 
, and the Erlang number m.
The lattice constant a can be absorbed in the space variable
and the average cell-cycle time �̄ in the time variable.

So far, we have defined our underlying structure, namely,
the Delaunay triangulation, and we have described the pos-
sible processes and parameters in the model. We are now
going to outline our method of observing cell population
growth. We here use the kinetic Monte Carlo method and we
now describe the specific conditions for our simulation.

Kinetic Monte Carlo methods are a well-established tool
in simulations for very different types of stochastic growth
processes ranging from crystal growth �see, e.g., �34–41�� to
investigations of stock market development �42�.

The kinetic Monte Carlo method or event-based Monte
Carlo makes use of all possible events in the system at time
t �43–45�. According to the specific probability of the event,
we then step by step choose an event to occur and increase
the time by the time step

�t = −
1

rt
ln�1 − �� . �2�

Here, � is a random number uniformly distributed in �0,1�,
and rt=�ipi is the sum of all transition rates pi of possible
events which may occur at time t.

We want to explain the development of the cell population
and the critical surface dynamics, so our main quantities are
the cell diameter of the population and the border cells.

It is obviously important to have a measurement of the
size of the cell population which is independent of the mor-
phology. Although we can also analyze growth kinetics using
the cell population size N�t�, in this case we take the gyration
radius defined by

Rgyr = 1

N
�
i=1

N

�r�i − R� 0�2. �3�

Here R� 0= 1
N�i=1

N r�i is the position of the center of mass. For a
compact circular cell aggregate �in d=2 dimensions�, Rgyr is

related to the mean radius R̄�t�= 1
2��0

2�R� , t�d �polar angle

� of the aggregate by R̄=Rgyr
2.

B. Three-dimensional model

Brú et al. �15–18� analyzed both cell lines of in vitro
monolayers and cell lines of tumors in vivo. In both cases
they found strong evidence for the same growth dynamics,
and concluded that the growth is based on the same rules.
Therefore, to model real systems in three dimensions, it is
straightforward to use the same basic rules as in the 2D case.
We then are able to compare the results in both cases.

Since all the model rules explained in the previous para-
graph can directly be extended to an additional dimension,
we just point out the differences:

�a� For the construction of the Delaunay mesh we use a

cubic lattice, resulting in an average cell volume of V̄=a3.
Each cell has an average of 12 neighbors.

�b� The computation time grows with �L6 in three dimen-
sions instead of �L4 in two. This limits the range of param-
eters being investigated dramatically.

�c� The connection between radius of gyration Rgyr and

mean radius R̄ of a hard sphere in generalized dimension d is

given by R̄=Rgyr
�d+2� /d �for d=3 one obtains R̄=Rgyr

5
3 �.

In vivo 3D tumors grow up to 1010 cells. That population
size cannot be reached with single-cell models. To overcome
this problem we introduce a coarse-grained cell model,
which allows for lattice site occupation numbers larger than
1, i.e., nocc� �0,1 , . . . ,nmax�. Although a coarse-grained cell
can be identified with an ensemble of maximum nmax single
cells, the cell-cycle states are reduced to only one variable,
an average Erlang number m. The model rules basically re-
main unchanged, except that lattice sites are considered as
free for proliferation and migration if nocc�nmax:

�a� A cell is able to divide if there is a lattice site with
n�nmax in range of �L. The offspring is placed on the near-
est site for which n�nmax holds.

�b� A cell can migrate if there is a direct neighbor site with
n�nmax.

We assume that an occupation number greater than 1 cor-
responds to a space renormalization x�=sx, with s=nmax

1/3 .
Consequently the parameters such as proliferation length �L
and migration rate 
 have to be renormalized as well.

To sum up, we have introduced two models to simulate
the growth of cell colonies in three dimensions: an
individual-cell model, which is used for comparison with the
previous 2D simulations, and a nonindividual coarse-grained

(b)(a)

FIG. 1. �Color online� �a� 2D lattice: based on a square lattice
�white lines� the Voronoi points �black� are distributed and con-
nected by the Delaunay triangulation �red lines�. The corresponding
polygon �blue� for the shape of one cell �white� is shown. The
radius of the green circle denotes the proliferation length �L up to
which a dividing cell �white� can proliferate. �b� The dual graph of
the analog 3D lattice: the polyhedrons correspond to the cells. Here
cells inside the range �L of a proliferating cell �orange� are colored
blue instead of drawing a sphere surrounding them.
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model for comparison with real experiments. With an algo-
rithm based on the first model we are able to perform simu-
lations with up to 107 cells on a common personal computer.
The second enables us to deal with 109 cells or more. In the
coarse-grained model the maximum occupation number nmax
has to be specified in addition to the parameters of the 2D
model ��L ,
 ,m�.

III. COMPARISON OF THE 2D AND 3D SIMULATIONS

In this section we compare the coarse-grained 3D model
with the 2D model and show by comparison that both exhibit
the same properties. We first compare the 2D model with the
3D model with nmax=1, and discuss the case nmax	1 subse-
quently.

Figure 2 shows how both are constructed. In Figs. 2�a�
and 2�b� we see the 2D cases for the dual graphs, the Voronoi
structure and the corresponding Delauney triangulation. To
emphasize again the general algorithm, in the inset we show
for both cases an example of proliferating rim of thickness
�L �dark blue rim and one example of a cell division in red�.

In Figs. 2�c� and 2�d� corresponding structures in three di-
mensions are depicted.

A. Lattice artifacts

An important feature of both models is the avoidance of
lattice artifacts in the simulation results. For the 2D model it
was shown in detail that for three regular lattice types,
namely, the simple square lattice �von Neumann neighbor-
hood�, the hexagonal lattice, and the octagonal lattice �Moore
neighborhood�, simulations with noise reduction show the
underlying lattice structure as an artifact, but that this is not
the case for our Voronoi construction �14�.

In Fig. 3 we show that also for the 3D model noise reduc-
tion by sharpening the cell-cycle distribution or increasing
the parameter m of the Erlang distribution is possible. For the
2D square lattice �Fig. 3�a�� and the corresponding 3D cubic
lattice �Fig. 3�c�� the underlying structure of the regular lat-
tice shows up as an artifact. If we adopt exactly the same
parameters for the irregular Voronoi construction, we obtain
the expected round shape �Figs. 3�b� and 3�d��. Thus we have

(b)(a) (c) (d)

FIG. 2. �Color online� Examples of the irregular lattice and corresponding cell structure in two and three dimensions. �a� The Voronoi
structure, i.e., the cell geometry, in the 2D model: inactive cells �light blue� and proliferating cells �dark blue�, with an example path for a
cell to proliferate inside this rim �light green line�, and the involved cells �dark red�. �b� The Delaunay lattice structure corresponding to �a�:
inactive points �light blue�, proliferating points �dark blue�, path for proliferation �light green line�, and involved lattice points �dark red�. �c�
The Voronoi structure and the cell structure in the 3D model. Cells are depicted as spheres. �d� The Delaunay lattice structure corresponding
to �c�.

(b)(a) (c) (d)

FIG. 3. �Color online� Lattice artifacts in two and three dimensions. �a� Simulation with the individual-cell 2D model on a simple square
lattice with �L=1, m=10 000, and 
=0. �b� Simulation with the individual-cell 2D model on the Voronoi structure with the same parameters
as �a�. �c� Simulation with the individual-cell 3D model on a simple cubic lattice with �L=1, m=10 000, and 
=0, nmax=1. �d� Simulation
with the individual-cell 3D model on the Voronoi structure with the same parameters as �c�. The color represents the distance from the center
of mass in the range between overall minimum and maximum distance. The lattice artifacts in lattice models on regular lattices become the
more pronounced the larger m is. With m→1 �assumption of Poissonian cycle time distribution�, increasing �L �thick proliferating rim� or
if free migration of cells on the lattice �detaching cells that move freely� is considered, the lattice artifacts disappear.
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illustrated that both for 2D and 3D our models are free from
lattice artifacts.

B. Cell-cycle time distribution

The next step is to show that our models give the same
cell-cycle distribution, namely, the Erlang distribution. In
Fig. 4 the distribution resulting from our simulations in two
and three dimensions together with the theoretical prediction
of Eq. �1� is depicted for a fixed set of parameters. They are
in very good agreement.

C. Growth kinetics

We continue by investigating the growth kinetics in two
and three dimensions, i.e., the time evolution of the gyration
radius Rgyr�t� of the single-cell-based model. It is qualita-
tively the same in two and three dimensions and is composed
of three growth phases sketched in Fig. 5 for 3D case �for 2D
case see Fig. 2a of Ref. �14��. Given an initial radius smaller
than the proliferation length, in the beginning a diffusion-
like growth �phase I� is observed with Rgyr� t1/2 if the migra-
tion rate 
	0, followed by an exponential �phase II�. The
crossover time between phase I and phase II increases with

; for 
=0, i.e., in the absence of free cell migration, phase
I is missed out. In the asymptotic limit the growth becomes
linear with constant expansion velocity vgyr �phase III�. If 

is very large and �L is small, then phase II is very short or
missed out.

The exponential phase crossing over to linear growth
seems to be a robust feature for a wide range of tumor mod-
els �see �46,47� and references therein� and is confirmed by
several experiments with different cell lines �e.g., �48,49��.

We further analyze the dependence of the expansion ve-
locity v on the Erlang number m, leaving the average cell-
cycle time constant. With growing m the cell-cycle distribu-
tion peak sharpens and becomes a � function for m→�.

Here again we compare the 2D and 3D models �see Fig. 6�.
For noise-reduced systems �m	20� we observe just a weak
dependence on the Erlang number. In this case the effective
cell-cycle time can be set to �eff� �̄ / ln�2�. The results in both
dimensions are in good agreement.

FIG. 4. �Color online� Cell-cycle time distribution of clusters in
two �light blue shading� and three dimensions �coarse-grained
model; red squares� in comparison with the Erlang distribution
�black dash-dotted line�. Parameters: �L=9, m=60, and 
=0 for
the 2D model, and �L=2.21 with a coarse-grained factor s=3 in the
3D model with compounded cells; hence nmax=27.
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FIG. 5. �Color online� Scheme of the development of the mean
radius and the corresponding growth velocity from a 3D simulation

with parameters �L=4, 
=2, and m=5. �a� Radius R̄ vs time t
divided into three phases of development: an exponential phase, a
linear phase, and a transient in between. �b� Growth velocity v
=dR̄ /dt vs time t averaged over 20 neighboring data points to sup-
press large fluctuations. The initial t1/2 phase is very short due to 

being very small; hence it cannot be seen.
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FIG. 6. �Color online� Asymptotic expansion velocity v vs Er-
lang number m ��L=1, 
=0� in two �red� and three �green� dimen-
sions, obtained by single-cell-based kinetic Monte Carlo simula-
tions. The lines are fits using Eq. �4�.

COMPARING THE GROWTH KINETICS OF CELL… PHYSICAL REVIEW E 79, 051907 �2009�

051907-5



We find that the time evolution depends on the dimension
of the system, while the asymptotic expansion velocity does

not. For v= dR̄
dt �vgyr we obtain the empirical relation �14�,

independently of the spatial dimension,

v2 � �B2��L���L��2/�eff
2 + 
/�eff� , �4�

�eff
−1 = m�21/m − 1��̄−1, �5�

�L���L� = A��L − 1� + 1, �6�

for d=2,3. The constants in Eqs. �4�–�6� were obtained by
fitting the numerical results �Figs. 7 and 8� found for the
expansion velocity and give A=0.68 and B=1.4 for 2D case
�50� and A=0.708 and B=1.236 for 3D case. Since the

numerical data fit quite well to Eqs. �4�–�6� and the constants
A and B are approximately the same in both dimensions, we
conclude that this is the case for the asymptotic expansion
velocity, too. Due to the much larger computational effort,
the results in three dimensions fit less accurately than those
in two dimensions. The origin of the deviation between �L�
and �L is a permutation effect: Assuming a �-like cell-cycle
distribution and �L	1, the number of proliferating cells in
the rim depends on the sequence in which they are chosen. If
the cells nearest to the border are chosen first, they block the
division of the innermost cells in the rim. Consequently the
expansion is slowed down and this is expressed by the factor
of 0.68 in Eq. �6�. As the cell-cycle distribution smooths, this
effect vanishes, which is incorporated by the factor B /�eff,
since B /�eff�m=1��1 /0.68.

In the coarse-grained case the effect described above does
not occur and Eqs. �4�–�6� are not valid any more. Instead we
find for the asymptotic expansion velocity with 
=0
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FIG. 7. �Color online� Square of the asymptotic expansion ve-
locity v2 of the single-cell-based kinetic Monte Carlo simulations vs
square of proliferation length �L2. �a� The migration rate is kept
constant with values 
=0 �circles�, 
=10 �squares�, and 
=20
�diamonds� in two dimensions. �b� In three dimensions the migra-
tion rate is chosen to be 
=0 �circles�, 
=0.5 �squares�, and 

=2 �diamonds�. In both cases the Erlang number is set to m=1. The
continuous curves �same color� depict the result of Eq. �4� for the
corresponding parameters.
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FIG. 8. �Color online� Square of the asymptotic expansion ve-
locity v2 of the single-cell-based kinetic Monte Carlo simulations vs
migration rate 
. �a� The proliferation length is kept constant with
values �L=1 �circles�, �L=3 �squares�, and �L=6 �diamonds� in
two dimensions. �b� In three dimensions the proliferation length is
chosen to be �L=2 �circles�, �L=3 �squares�, and �L=5 �dia-
monds�. In both cases the Erlang number is set to m=1. The con-
tinuous curves �same color� depict the result of Eq. �4� for the
corresponding parameters.
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vcoarse = s�Lrescale/�̄ , �7�

with �Lrescale=�L /s independently of m �s=nmax
1/3 as defined

in Sec. II B�. This is a consequence of the neglect of the
individual cell-cycle state information nocc

k . Nevertheless, in
the case of m=1 the situation in our coarse-grained model
corresponds to a model where the individual cycle state in-
formation is stored in a histogram, since this histogram col-
lapses to a single value. For this reason we will take m=1 for
comparison with experiments.

The investigated parameter range in these figures differs
in two and three dimensions, since, as already mentioned,
computation times differ significantly and become exceed-
ingly high in three dimensions.

IV. ANALYTICAL APPROACH TO GROWTH KINETICS

In Sec. III it was shown that the radial growth of the cell
colony can be divided into three consecutive regimes. As-
suming the system to be in one of these regimes, an analyti-

cal description of the time evolution of the mean radius R̄ is
quite simple and intuitive. In the exponential phase we ob-

tain R̄�t��C1et/��effd�, and in the linear regime R̄�t��vt+C2.
In �46� an approach was suggested which connects phases II
and III via a steplike function �e.g., the Hill function� to
obtain an overall description of the time evolution. Phase I is
not of macroscopic relevance if the migration rate is suffi-
ciently small, which is admissible for many systems.

These phases are, of course, approximations and do not
provide any information about the evolution in the crossover
regimes in between. In the following we present a very
simple analytical model to describe the time evolution of the
mean radius that connects these phases and gives a more
complicated but accurate approximation.

For 
=0 we assume the cell colony to form a hard sphere
of cell number N, which in this case can be connected to the
radius via N=KdRd with K2=� /a2 and K3=4� / �3a3� in two
and three dimensions. Figure 9 supports this approximation,
where the morphologies of the cell colony at different stages
of evolution are depicted.

We now take into account that only cells NP in the prolif-
erating rim of effective thickness �Leff at the border of the
colony �apparent in Fig. 9� are able to divide, and thus write

dN

dt
=

NP

�m
, with �m = ��eff �single-cell model�

�̄ �course-grained model� .
�
�8�

For R��Leff the variable NP is just the number of cells in
the whole colony volume, NP=KdRd=N, and for R	�Leff
one gets NP=Kd�Rd− �R−�Leff�d�. The effective proliferation
length �Leff=B�L���L� is given by the numerical results
expressed in Eq. �4� for the single-cell case and in the coarse-
grained case it is �Leff=�L. Introducing the variable
rªn1/d this leads to the ordinary differential equation

dr

dt
=

1

d�mrd−1 �rd − H�r − Kd
1/d�Leff��r − Kd

1/d�Leff�d� , �9�

with H being the unit step function. This equation neglects
synchronization effects but is still a valuable approximation
for sufficiently small Erlang numbers.

Starting at time t=0 with N�0�=N0 cells and R�0�
��Leff, the solution in two dimensions is given by

r�t� = �
N0et/�2�m� for t � �c

K2�Leff

2
�1 + W� N0

2

K2
2�Leff

4 e1+2t/�m�� for t 	 �c, �
�10�

with W�z� being the Lambert function and �c=�m ln�
K2�Leff

N0
�.

In three dimensions the solution has a more complicated
form and is given implicitly by

(b)

(a)

FIG. 9. �Color online� Time evolution of cell colonies with pa-
rameters �L=6, 
=0, and m=1 �single-cell-based model�. The
colonies are depicted for times t=8,12,20 �in units of average cell-
cycle time�. The active proliferation rim is labeled by color. �a� 2D
case: proliferating cells in dark blue and inactive cells in light blue.
�b� 3D case: surface cells in light blue, proliferating cells in medium
blue, and inactive cells in black. Here one-eighth of the spheroid is
cut off, so that the interior becomes visible.
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t

�m
= �ln�r3/N0� for r � rc

1
3

arctan�p�r�� +
1

2
ln�q�r�� +

r

K3
1/3�Leff

−
3

9
� − 1 for r 	 rc, with rc = K3

1/3�Leff, � �11�

with polynomials p and q of r:

p�r� = 3� 2r

K3
1/3�Leff

− 1� ,

q�r� =
K3

4/3�Leff
4

N0
2 �K3

2/3�Leff
2 − 3K3

1/3�Leffr + 3r2� . �12�

It can easily be seen that in the limit r→� the asymptotic
expansion velocity v= dR

dt �R→�=Kd
−1/d dr

dt �r→� that follows
from Eqs. �10� and �11� agrees with the findings obtained
above, namely, that v=�Leff /�m. Figure 10 shows that the
absolute growth kinetics differs in two and three dimensions,
while the asymptotic expansion velocity v remains constant.
For d=3 the colony remains longer in the exponential phase
than for d=2 since the cells spread in an additional dimen-
sion, taking more time to reach a radius of the size of the
proliferation length.

In Ref. �46� a different analytical expression for the
colony radius was proposed that mimics the transient from
the initial exponential to the linear-growth phase using a Hill
function H�t�= tc

n / �tc
n+ tn� as a “switch.” It turns out that ana-

lytical expression is not able to capture the transient behavior
of our cellular automaton simulations properly for any
choice of tc or n. Figure 10 shows the expression for tc
=ln�Kd�Leff

d /N0��m. For small n�10 the Hill function is not
decaying fast enough so that the exponential-growth term
remains dominating within the physiological relevant time
range. For large n�10 the crossover is too sharp. The ana-
lytical expression in this paper shows perfect quantitative
agreement with the growth kinetics of the cellular automaton
models over the whole time range.

Particularly in three dimensions the convergence to the
linear asymptotic regime is slow. Thus, the expansion veloci-
ties v obtained from experimental or numerical data at a
certain radius R may differ from the asymptotes. With an
initial guess for the proliferation length, one can use Eq. �9�
to determine the relation

v�R�
vasy

= 1 −
�Leff

3R2 �3R − �Leff� . �13�

Recalculating �L and using this equation again gives an it-
erative procedure, but taking the first order is sufficient in
most cases.

V. VALIDATION BY COMPARISON TO EXPERIMENTS

In Ref. �14� it was shown that the presented lattice-based
cellular automaton model in two dimensions is able to repro-
duce the experimental results concerning the growth kinetics
found in Refs. �15,16� of rat astrocyte glioma monolayers in
vitro. As we will see in Sec. VI, it does not make sense to
compare the three-dimensional numerical data to experimen-
tal results of monolayer �2D� cell aggregates. Thus we com-
pare 2D and 3D cases separately. In order to compare the
numerical results with experiments in three dimensions we
construct a coarse-grained model that can deal with suffi-
ciently high cell numbers of about 109 cells, which appear in
common cell colonies. The results of this model are analo-
gous to the single-cell-based model in three dimensions; i.e.,
choosing the correct rescaled parameters will give approxi-
mately the same kinetics.

To obtain the set of parameters for reproducing experi-
mental data, the asymptotic expansion velocity is measured
and the iterative correction based on Eq. �13� is used. The
result gives �L using Eq. �7�. The monolayers form a one-
cell-thick dense cell aggregate �15�, the xenografts a solid
approximately spheroidal dense aggregate so free migration
of cells can be neglected; hence 
=0. Since in the coarse-
grained model vcoarse is independent of m, we choose m=1
for the reason described in Sec. III C and to save computa-
tion time. Note that the effect of choosing m=1 instead of
m�5–60 is a speedup in the growth velocity by a factor of
�1.4 as we have shown in Fig. 6 and, as we will show in
Sec. VI, transient oscillations for small cell population sizes.
However, in the experimental data, oscillations could not be
found, suggesting that for the experimentally observed range
of population sizes, synchronization effects could be ne-
glected. In Sec. VI we will show that for m=5–100 such
oscillations are expected to disappear at population sizes of
N�103 cells, corresponding to cell aggregate radii of about
200–300 �m in two dimensions and 150 �m in three di-
mensions, which justifies our assumption of m=1.

FIG. 10. �Color online� Comparison of the analytical models for
the growth kinetics in two and three dimensions. The parameters
were chosen to be �Leff=5, 
=0, and N0=1. �a� Long-time devel-
opment and �b� crossover between exponential and linear regimes.
Thick orange �gray� line: result of Eq. �10� �d=2�; thick red �black�
line: result of Eq. �11� �d=3�. The thin lines are results of the
phenomenological growth law presented in �46� using the Hill func-
tion H�t�= tc

n / �tc
n+ tn�—thin green �gray� line: d=2, n=8; dashed

green line: d=2, n=16; thin blue �black� line: d=3, n=4; dashed
blue line: d=3, n=8.
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Figure 11�a� compares the experimental data for the
growth kinetics of a tumor cell line �rat astrocytes �16�� with
the 2D numerical and analytical model of Secs. II–IV. In
these monolayer cultures, all cells have access to nutrients;
hence limiting effects of nutrients on the growth kinetics do
not occur. From the comparison of experimental and simula-
tion results, we conclude that the crossover from an initial
exponential- to a linear-growth phase seems to emerge from
contact inhibition of cell division. In Fig. 11�b� we compare
both our computer simulations and our coarse-grained model
with experimental findings for a tumor growing subcutane-
ously in mice �53� to be able to compare the data obtained in
vitro �Fig. 11�a�� to the in vivo situation. For this purpose we
used NIH3T3 cells transformed by expression of the human
oncogene erbB2. After injection into nude mice these cells
form subcutaneously proliferating tumors �53�. The three-
dimensional growth of the resulting tumors could be mod-
eled using the coarse-grained cellular automaton model. The
xenografts are well vascularized and only sporadically small
necrotic lesions are found, so that we assume oxygen and

glucose are not the major factors limiting tumor growth. In-
stead, contact inhibition seems to control the speed of expan-
sion as proposed in Refs. �46,54� for multicellular spheroids
growing in liquid suspension.

VI. SYNCHRONIZATION EFFECTS

In this section we want to describe the influence of syn-
chronization on the growth kinetics of a cell colony. As ex-
plained above, in our work the cell-cycle time distribution is
mimicked by an Erlang distribution, parametrized by the Er-
lang number m. High Erlang numbers m lead to a sharp
distribution of cell-cycle times. As a consequence cells are
more likely to perform division at the same time. This syn-

chronization results in oscillations of the variables R̄�t� and
N�t� describing the growth kinetics. In this part of our paper
we focus on the question of how synchrony of the cell popu-
lation decreases with time and how this depends on the Er-
lang number. Knowing until which cell population size os-
cillations should be visible in the data depending on the
Erlang number m may permit estimation of the Erlang pa-
rameter m and thereby the cell-cycle time dispersion directly
from experimental data on the growth kinetics of cell popu-
lation sizes without extra experiments using cell proliferation
markers. For example, in the experiments discussed in Sec.
V the experimental data did not show oscillations, suggesting
that within the observed range of radii no synchronization
effects were present. For synchronized cell populations either
by drugs or by a circadian clock, the expected situation could
be very different.

In the presented cellular automaton model the Erlang dis-
tribution of the cell-cycle times with number m is generated
by letting a cell pass through m states q1 ,q2 , . . . ,qm with
equal transition rate � between qk and qk+1. If a cell in state
qm is chosen, it divides and two offsprings are generated on
the lattice, each being in the same state q1. At the time of
their creation these cells are synchronized. Due to the statis-
tical behavior of the system they desynchronize. Notice that
the different intermediate values qi, with i� �1,m�, of the
Erlang distribution do not necessarily represent true interme-
diate states of the cell cycle. We rather used this description
because the emerging cell-cycle distribution resembles those
found in experiments �33�.

Now it is an important issue how synchronization is de-
fined. There exist different definitions �see, e.g., �55��. One
possibility is to define such a measure as the deviation of the
state distribution �i.e., the possibility p�qk� of a cell to be in
state qk� from the equidistribution. Instead we use a measure
of synchrony which can easily be obtained by experiments:
the amplitude of the oscillatory offset.

From Sec. V we know that the population size in the
exponential phase is given by Nappr�t��N0et/�eff. For high
Erlang number m this approximation fails and we obtain

N�t� = Nappr�t� + Nosci�t� . �14�

In the following we calculate the form of the second term
Nosci from our model, focusing on the role of the Erlang
number. For simplicity we assume that the population stays
in the exponential-growth phase, which ensures that the cells
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FIG. 11. �Color online� Mean radius R of the cell aggregate vs
time t. �a� In two dimensions—blue crosses: experiment for C6 rat
astrocyte glioma cells �15,16�; red pluses: kinetic Monte Carlo
simulation of the 2D model with the same parameters as in Fig. 4;
green line: analytical result of Eq. �10� with �Leff=BL��8.725 and
N0=1, corresponding approximately to �L=9. We chose l
=10 �m for the cell diameter and �=19 h for the cell-cycle dura-
tion as in Ref. �14�. �b� Three dimensions—blue circles, green dia-
monds, violet squares: in vivo NIH3T3 mouse-fibroblast xenografts;
solid blue line: coarse-grained kinetic Monte Carlo simulations with
parameters �L=2.85, 
=0, m=1, and nmax=1000; dashed red line:
analytical result of Eq. �10� with �Leff=28.5 and N0=1. We have
chosen l=17 �m �51� and �=24 h �52�.
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do not stop their cycle. Hence cells once generated on the
lattice do not interact according to their proliferative behav-
ior. The only interaction—and this is the mechanism of syn-
chronization in this model—is cell division itself. Without
this mechanism the statistical dynamics would cause the sys-
tem to desynchronize faster.

In this case by considering a large ensemble one can set
up a linear dynamic system describing the time evolution of
the number of cells nk being in state qk. The initial conditions
are chosen in a way that the population is totally synchro-
nized in the beginning,

ṅ1 = − n1 + 2nm, k = 1, �15�

ṅk = − nk + nk−1, k = 2, . . . ,m , �16�

nk�0� = N0�k1, k = 1, . . . ,m , �17�

N = �
k=1

m

nk. �18�

This system �the rate is absorbed by t��t� can be solved
analytically for arbitrary Erlang number m. The solution has
the form of Eq. �14�. A comparison of this solution and the
3D numerical model is depicted in Fig. 12 and confirms that
the presented equations give a good description in the expo-
nential phase. The first term Nappr contains the real eigenval-
ues and is dominated by et/�eff corresponding to the highest
real eigenvalue; the second belongs to the imaginary eigen-
values. Considering the relative oscillation �ªNosci /N, we
find that ��t��e−t/�effNosci�t�. The lowest frequency

�min =
2�

Tmax
= 21/m sin�2�/m� = 2�� 1

m
+

ln 2

m2 � + O� 1

m3�
�19�

belongs to the eigenvalue with the second highest real part
dominating the oscillations. We therefore have shown that
the amplitude of the relative oscillation decays exponentially

and define the synchronization time �sync by the damping
factor e−t/�sync. Thus we get

�sync =
m2

2�2�1 +
ln 2

m
� + O� 1

m0� . �20�

We now introduce the synchronization number S
ª�sync /Tmax, which describes how many oscillation periods
can be seen until the amplitude drops to the e−1-fold of the
initial value, and find

S �
m

2�2 , m � 1. �21�

To confirm this result we performed simulations in three di-
mensions with different Erlang numbers m, leaving the aver-
age cell-cycle time constant. Instead of investigating the ef-
fects from the beginning with one initial cell, a population
was grown and artificially synchronized at a certain time
when the population size was sufficiently high to have a
large ensemble. This prevents the data from becoming too
noisy. Additionally a high proliferation length was chosen to
keep the population in the exponential-growth phase. The
results can be seen in Fig. 13. The linear behavior in the
half-logarithmic plot makes clear that the population stays in
the exponential regime. The relaxation times of the oscilla-
tion agree well with the theory and the fact that significant
oscillations �S	1� are not visible until m	2�2�20. Thus
in the exponential-growth regime our theoretical consider-
ations are able to explain the synchronization behavior of the
simulated cell populations.

VII. CONCLUSION

In this paper, we have presented three different models for
cell populations in three dimensions: a single-cell-based
model, a coarse-grained model, and an analytical model. The
asymptotic expansion velocity v of the cell populations can
be related in these three models by the following argument.
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FIG. 12. �Color online� Comparison of numerical simulation
and analytical result of the population size n�t� for high Erlang
numbers in the exponential-growth phase. Red crosses: individual-
cell-based model with �L=8, 
=0, and m=100. Blue pluses: Ana-
lytical result of Eq. �14� for m=100. The population was synchro-
nized at time t�6.3�̄.

FIG. 13. �Color online� Population sizes vs time for different
Erlang numbers m=10,20,50,100 in a half-logarithmic diagram.
The 3D individual-cell-based model was used with the parameters
�L=8 and 
=0. The vertical blue line represents the time of total
synchronization. An ordinate offset between the curves was added
for convenience so as to not let them overlap.
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Assuming 
=0, the proliferation length in each model has to
be chosen in the following ways to obtain the same
asymptotic expansion velocity:

�a� single-cell model: v=B�L���L� /�eff
�b� coarse-grained model: v=s�Lrescale / �̄
�c� analytical model �coarse/fine�: v=�Leff /�m
Equating this leads to

�Lrescale = sB�L���L�
�̄

�eff
, �22�

�Leff = B�L���L�
�m

�eff
. �23�

The main goal of this paper is to compare the features of the
proposed 3D model for cell population growth with its 2D
version. This was done on a Dirichlet lattice in order to avoid
lattice artifacts. In both cases the numerical calculations
yield the same qualitative behavior: an initial phase obeying
a t1/2 power law which is missed out if cells cannot detach
from the tumor is followed by a transient exponential growth
and an asymptotic linear regime in the end. The dependence
of the asymptotic expansion velocity on the parameters of
proliferation length, migration rate, and Erlang number was
examined and we showed that the law found in �14� is valid
in three dimensions, too. Nevertheless the 2D model is not
appropriate to model the exact time evolution of the mean
radius of a 3D cell colony, since in the latter case it stays
longer in the exponential phase. We propose a simple ana-
lytical approach to include this fact which can give a suitable
approximation for the kinetics if the migration rate is zero.

A comparison of the numerical and analytical models to
the experimental data in two and three dimensions is given
and shows that they approximately agree. The single-cell-
based models may be validated by measuring the thickness
of the proliferating rim �e.g., by BrdU �56� or Ki67 labeling
�53��, the cell-cycle duration �e.g., by cohort experiments
�57��, and visualizing detaching cells �in vitro by live imag-
ing �58�, or light or confocal microscopy; in vivo by biopsy
followed by image analysis�. If growth-inhibited cells are
mainly arrested in cell-cycle checkpoints after the restriction
point, the measured thickness should correspond to the pro-
liferation length �L. However, the relation between growth
velocity and the experimentally observed proliferation length
should involve an additional proportionality factor that de-
pends on the distribution of cell-cycle checkpoints in which
growth-inhibited cells are arrested. Experiments are neces-
sary to identify such possible proportionality factors. The
cohort experiments permit determination of the cycle time
length distribution and hence �̄ and m. Apoptosis would res-
cale our growth rate and can experimentally be detected by
TdT-mediated dUTP-biotin nick end labeling �TUNEL� as-

say �53�. If the tumor is basically compact, i.e., if the thick-
ness of the proliferating rim is large compared to the length
scale at which detached cells can be found, the approxima-
tion of this paper should directly be applicable. For the
coarse-grained model, the parameters can be determined
from the parameters of the single-cell-based models as ex-
plained above.

Additionally in this paper, we consider the situation when
the Erlang number is large, resulting in a sharply peaked
cell-cycle distribution. An initially synchronized cell popula-
tion will then show an oscillatory offset which is damped out
in time. We have introduced a synchronization time, i.e., the
time the population stays synchronized, which is the recip-
rocal of the damping factor.

Computations based on our model in three dimensions are
much more time consuming than in two dimensions, limiting
the range of parameters and cell numbers significantly. The
coarse-grained algorithm is an alternative for large popula-
tion sizes but neglects individual information about the cells.
Since the qualitative behavior of the radial kinetics is equal
in each of the presented models, we suggest that the single-
cell-based model in two dimensions is sufficient to describe
the generic features of population growth. Our results con-
firm that in cases where more precise predictions are of im-
portance, e.g., in medical research, 3D simulations are nec-
essary.

There are several perspectives of continuing the current
work. One possibility is to develop more sophisticated
coarse-grained models, incorporating, for example, adaptive
grid methods. It would then be possible to model regions of
interest such as the colony surface with high resolution,
while the inner part is represented by coarse-grained cells. In
this case if the number of cells at the surface of the colony is
high enough, the universality class of the growth could be
determined and compared to those in Refs. �14,15�.

Further, it would be interesting to validate the predicted
behavior of desynchronization by experiments to test if the
assumption of Erlang-distributed cell cycles is a good ap-
proximation. This could be done, for example, by measuring
the mitosis rate of a colony versus time �57�. Due to its
simplicity, the proposed model is of generic character and
therefore serves as a basis for more complex models. How-
ever, a possible next step would be to implement a mecha-
nism which represents a therapy by triggering apoptosis,
causing the cell colony �tumor� to shrink.
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